Spectral Theory from the Second-Orderq-Difference Operator
نویسندگان
چکیده
منابع مشابه
Spectral Theory from the Second-Order q-Difference Operator
Spectral theory from the second-order q-difference operator Δ q is developed. We give an integral representation of its inverse, and the resolvent operator is obtained. As application , we give an analogue of the Poincare inequality. We introduce the Zeta function for the operator Δ q and we formulate some of its properties. In the end, we obtain the spectral measure. 1. Basic definitions Consi...
متن کاملOperator and Spectral Theory
This lecture is a complete introduction to the general theory of operators on Hilbert spaces. We particularly focus on those tools that are essentials in Quantum Mechanics: unbounded operators, multiplication operators, self-adjointness, spectrum, functional calculus, spectral measures and von Neumann’s Spectral Theorem. 1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملNevanlinna theory for the difference operator
Certain estimates involving the derivative f 7→ f ′ of a meromorphic function play key roles in the construction and applications of classical Nevanlinna theory. The purpose of this study is to extend the usual Nevanlinna theory to a theory for the exact difference f 7→ ∆f = f(z+ c)− f(z). An a-point of a meromorphic function f is said to be c-paired at z ∈ C if f(z) = a = f(z+c) for a fixed co...
متن کاملOn the spectral curve of the difference Lamé operator
We give two ”complementary” descriptions of the curve Γ parametrizing doubleBloch solutions to the difference analogue of the Lamé equation. The curve depends on a positive integer number l and two continuous parameters: the ”lattice spacing” η and the modular parameter τ . Apart from being a covering of the elliptic curve with the modular parameter τ , Γ is a hyperelliptic curve of genus 2l. W...
متن کاملSome results on value distribution of the difference operator
In this article, we consider the uniqueness of the difference monomials $f^{n}(z)f(z+c)$. Suppose that $f(z)$ and $g(z)$ are transcendental meromorphic functions with finite order and $E_k(1, f^{n}(z)f(z+c))=E_k(1, g^{n}(z)g(z+c))$. Then we prove that if one of the following holds (i) $n geq 14$ and $kgeq 3$, (ii) $n geq 16$ and $k=2$, (iii) $n geq 22$ and $k=1$, then $f(z)equiv t_1g(z)$ or $f(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2007
ISSN: 0161-1712,1687-0425
DOI: 10.1155/2007/16595